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Abstract

■ Real-world decision-making often involves social consider-
ations. Consequently, the social value of stimuli can induce
preferences in choice behavior. However, it is unknown how
financial and social values are integrated in the brain. Here,
we investigated how smiling and angry face stimuli interacted
with financial reward feedback in a stochastically rewarded
decision-making task. Subjects reliably preferred the smiling
faces despite equivalent reward feedback, demonstrating a
socially driven bias. We fit a Bayesian reinforcement learning
model to factor the effects of financial rewards and emotion

preferences in individual subjects, and regressed model predic-
tions on the trial-by-trial fMRI signal. Activity in the subcallosal
cingulate and the ventral striatum, both involved in reward
learning, correlated with financial reward feedback, whereas
the differential contribution of social value activated dorsal
temporo-parietal junction and dorsal anterior cingulate cortex,
previously proposed as components of a mentalizing network.
We conclude that the impact of social stimuli on value-based
decision processes is mediated by effects in brain regions par-
tially separable from classical reward circuitry. ■

INTRODUCTION

Social cues are ubiquitous in day-to-day life and have sub-
stantial effects on decision-making processes. The brain
mechanisms that underlie the effects of social cues on
decision-making processes, however, are unclear. Much
work has been done showing that financial rewards drive
decision processes and that these effects are mediated by
a network of anatomically interconnected areas (Haber,
Kim, Mailly, & Calzavara, 2006), including orbital and ven-
tromedial prefrontal cortex and ventral striatum (Elliott,
Agnew, & Deakin, 2010; Bischoff-Grethe, Hazeltine,
Bergren, Ivry, & Grafton, 2009; Montague, King-Casas, &
Cohen, 2006; OʼDoherty et al., 2004; OʼDoherty, Critchley,
Deichmann, & Dolan, 2003). Other work has shown that
social cues are processed by a network of areas including
the temporo-parietal junction (TPJ), the temporal poles,
and anterior cingulate cortex (ACC) (Van Overwalle &
Baetens, 2009; Frith & Frith, 2006; Allison, Puce, &
McCarthy, 2000). Social cues may also activate regions par-
tially overlapping with classical reward circuitry, with ven-
tromedial (Grossman et al., 2010) and orbital prefrontal
cortex responding to emotional aspects of social pro-
cessing (Hynes, Baird, & Grafton, 2006).
There is growing interest in the interrelationship of

reward and social information processing. For example,

recent work has shown that explicit social cues, in the
form of advice from a confederate, can be integrated with
personal experience in learning and decision-making, an
effect mediated by ACC (Behrens, Hunt, Woolrich, &
Rushworth, 2008). Other work has shown that when
explicit feedback is received from a confederate instead
of a computer, the temporal poles are engaged (van den
Bos, McClure, Harris, Fiske, & Cohen, 2007). A recent
study has shown that learning is more effective when cues
are emotional faces rather than cognitive stimuli, and
that this effect is mediated by the amygdala (Hurlemann
et al., 2010). In many cases, however, social factors are
implicit, making it difficult to isolate their effects on
decision-making.

We sought to examine the effect of implicit social cues
on learning, using a modeling approach that allowed us
to infer implicit emotional effects on decision-making di-
rectly from behavioral data. We used a task in which sub-
jects had to determine which of two faces was being
financially rewarded most often. Importantly, the faces
had different emotional expressions, so the task was to
associate an expression with a financial reward. Studies
have shown that human subjects were more likely to
cooperate with smiling partners (Scharlemann, Eckel,
Kacelnik, & Wilson, 2001) and that they will forego small
amounts of money to look at pictures of attractive people
(Smith et al., 2010; Hayden, Parikh, Deaner, & Platt,
2007). Similarly, studies in monkeys have shown that
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animals will forego juice to view faces of high-ranking,
but not low-ranking, monkeys (Deaner, Khera, & Platt,
2005). We have also shown previously that expressions
can impact on learning, and that we can, on a subject-
by-subject basis, model the relative impact of social and
financial reward cues using a Bayesian model (Averbeck
& Duchaine, 2009).

In principle, the behavioral effects of the facial expres-
sions could be mediated directly by networks that pro-
cess nonsocial rewards. Consistent with this hypothesis,
happy expressions have been shown to activate ventro-
medial prefrontal cortex (OʼDoherty, Winston, et al.,
2003), an area which represents stimulus reward value.
Moreover, damage to this region may lead to deficits in
social decision-making (Grossman et al., 2010). Similarly,
behavioral studies have shown that smiles can be ap-
petitive (Murphy & Zajonc, 1993), potentially engaging
Pavlovian value systems in the ventral striatum and ventro-
medial prefrontal cortex (Dayan, Niv, Seymour, & Daw,
2006; De Martino, Kumaran, Seymour, & Dolan, 2006;
Daw, Niv, & Dayan, 2005; McClure, Laibson, Loewenstein,
& Cohen, 2004). Alternatively, the effects of facial expres-
sions on decision-making could be mediated by brain net-
works that underlie social processing including theory of
mind (Van Overwalle & Baetens, 2009; Frith & Frith, 2006;
Allison et al., 2000). Using fMRI in conjunction with our be-
havioral model allows us to distinguish these hypotheses.

METHODS

Task

Eighteen participants (6 women) performed a decision-
making task while undergoing fMRI. All participants
signed informed consent and the study was approved
by the National Hospital for Neurology and Neurosurgery
ethics review board. Each participant was given the fol-
lowing instructions beforehand: “On each trial in this task
you will be presented with two faces. You will have to se-
lect one of the faces. Press the top button to select the
top face, the bottom button to select the lower face. Your
task is to try to figure out which face in each block has
the highest probability of winning and pick that face as
many times as possible. You will be told when the block
switches, and at each switch the faces will be associated
with new probabilities of winning.”

The face stimuli and probabilities of winning were kept
constant throughout each block, and each block con-
sisted of 26 trials. Twenty-six trials are sufficient for
an ideal observer to identify the correct face in 85% of
blocks (Averbeck & Duchaine, 2009). Probabilities were
assigned at the beginning of each block, with one face
leading to a “win” 40% of the time, the other leading to
a “win” 60% of the time. Probabilities were counter-
balanced across blocks such that the happy face was as-
signed the high reward probability in two blocks and the
angry face in two blocks and the order of these assign-

ments was balanced, as much as possible, across partici-
pants. Participants were given four blocks of happy and
angry faces. Two male identities were used. This was in-
terleaved with four blocks of neutral faces with different
identities. Analysis was confined to the emotion blocks.
All participants were paid the same amount (which was
greater than their actual winnings) but they were not in-
formed of this until after the experiment had ended.

Behavioral Data Analysis

At the beginning of each block of trials, the subjects were
told that the probabilities had been reassigned and they
should try to work out by trial and error which face was
best. Thus, at the beginning of the block, the subjects
had no evidence about which face was best and they
had to begin selecting one or the other face, registering
the feedback, and trying to work out which face was best.
Although one face was rewarded more often than the
other, the probabilities used were .6 and .4 and, as such
the task, were challenging. It was possible that over short
intervals the face which had a lower probability of being
rewarded would be rewarded more often than the other.
Therefore, in the initial analyses, we referenced the sub-
jectsʼ behavior to an ideal observer model which esti-
mated, based on all of the feedback received in the
current block, which face was best. By comparing each
subjectʼs choices to the ideal observer, a fraction correct
could be derived, as a baseline estimate of performance.
Additionally, by examining whether subjects chose the
happy face more often when they should have chosen
the angry face, or chose the angry face more often when
they should have chosen the happy face, we could deter-
mine if their off-model decisions showed a relative pref-
erence for the happy face.
Because the outcome in each trial was either a win or

a loss, the ideal observer was based upon a binomial
model. The likelihood that the rewards were being gen-
erated probabilistically by an underlying probability θi in
this model is given by:

pðDjθiÞ ¼ θrii ð1 − θiÞNi−ri ð1Þ

Here, D is the observed series of reward outcomes, θi
is the probability that face i (angry or happy) is rewarded,
ri is the number of times face i was rewarded, and Ni is
the number of times face i was selected. This equation
provides the distributions over reward probabilities for
each face. Specifically, as the subjects did not know the
underlying probabilities, they would infer a distribution
of possible probabilities, given the reward outcomes.
For example, if one observed seven heads in 10 coin
tosses, it would be possible that the coin was fair (i.e.,
p = .5 of heads vs. tails), but it would also be possible,
in fact more likely, that the coin was unfair and had a
probability of heads equal to .7. Equation 1 gives the
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complete distribution over the probabilities for a given
set of outcomes.
To make a decision, the subjects had to infer which face

was better. We operationalized this decision step by assum-
ing that subjects would compute the probability that face i
was more often rewarded than face j. This was given by:

pðθi > θjÞ ¼ ∫
1

0 pðθi∣DÞ∫
θi

0 pðθj∣DÞdθjdθi ð2Þ

The integral is over the posterior. For the ideal observer,
the prior was flat, and as such, the posterior is just the
normalized likelihood. As a decision rule, this probability
can be thresholded at chance. This gives the choice of
the ideal observer ( ^f ).

pðθi > θjÞ > 0:5 f^ ¼ i
pðθi > θjÞ < 0:5 f^ ¼ j

�
ð3Þ

The first behavioral analyses examine the consistency
between the choices of the ideal observer and the subjects
by building a 2 × 2 contingency table, with model choice
(happy or angry) as columns and subject choice (happy
or angry) as rows. For the case of p(θi > θj) = .5 (i.e.,
when the model is equivocal between the two choices),
we incremented both the happy and the angry choices
of the ideal observer in the choice table by .5. The ideal
observer was not used in any analyses of the fMRI data.
The ideal observer treats all choice stimuli equally and

ignores the emotional expression. Human subjects, how-
ever, are known to be influenced by the emotional content
of the stimuli. We added parameters to the ideal observer
model to account for these potential biases and fit the mod-
els with additional parameters to the choice data from in-
dividual subjects. This Bayesian Reinforcement Learning
(BRL)model contained four extra parameterswhich allowed
us to model weighting of positive feedback, weighting of
negative feedback, evidence bias (differential weighting
of feedback based upon the emotional content of the face
that was chosen), and a prior bias toward one of the faces.
For rewarded trials, the reward value in the model was

calculated as:

r0happyðtÞ ¼ :5þ aþ c

r0angryðtÞ ¼ :5þ a − c
ð4Þ

Whereas for unrewarded trials, it was calculated as

r0happyðtÞ ¼ :5 − b − c

r0angryðtÞ ¼ :5 − bþ c
ð5Þ

The variables a, b, and c were fit as free parameters in the
model. The parameter a is a weighting given to positive
feedback. For the ideal observer, positive rewards are val-

ued at 1, so a= 0.5. The parameter b is a weighting given
to negative feedback. For the ideal observer, negative
feedback is valued at 0, so again b = 0.5 for the ideal ob-
server model. Therefore, values of a and b below (above)
0.5 measure the amount that feedback is under (over)
weighted and values of a and b near zero indicate that
positive or negative feedback are ignored. The variable
c controlled the evidence bias introduced by the expres-
sion. If c is positive, feedback is given increased weight
for the happy face and decreased weight for the angry
face. Therefore, positive values of c indicate that the sub-
ject picked the happy face more often than would be
expected based on the feedback (evidence) alone, irre-
spective of the prior, discussed below. We also examined
a model with separate emotion preference terms for pos-
itive and negative feedback, but results were more robust
when we fit one term, c, to both.

The total reward in the block under the model for face
i was then calculated as:

ri ¼
XT
t¼1

r0iðtÞ ð6Þ

Thus, the total reward for each face, up to trial T in the
current block was the sum of the biased reward values.

The prior preference was modeled using a Beta distribu-
tion to model the prior disposition toward each face as:

pðθi∣αi;βiÞ ¼ θαi
i ð1 − θiÞβi ð7Þ

We constrained αi and βi to get a good model fit by reduc-
ing them to one degree of freedom. This was done by
estimating a single parameter, d, and then computing αi
and βi as:

αhappy ¼ 2ð0:5þ dÞ

αangry ¼ 2ð0:5 − dÞ

βhappy ¼ 2ð0:5 − dÞ

βangry ¼ 2ð0:5þ dÞ

ð8Þ

The parameters of the model were fit to individual
subjects by maximizing the likelihood of the parameters,
given the data. Thus, we first calculated

pðθi∣D;a; b; c; dÞ ¼ pðD∣θi;a; b; cÞpðθi∣dÞ
pðD∣a; b; c;dÞ ð9Þ

And then calculated the belief estimate under the model
using

pðθi > θjÞ ¼ ∫
1

0 pðθi∣D;a; b; c;dÞ

∫
θi
0 pðθj∣D;a; b; c;dÞdθjdθi

ð10Þ
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There were no prior distributions placed over the param-
eters, allowing these terms to be completely data driven.
The ideal observer can be recovered by setting a and b to
0.5, c to 0, and by assuming a flat prior on θ. We next
maximized the likelihood of the individual subjectʼs se-
quence of decisions by adjusting the parameters a, b,
c, and d. The likelihood was given by:

pðD*∣a; b; c;dÞ ¼
YN
k¼1

�
pkðθi > θjÞlk

þ ð1 − pkðθi > θjÞÞð1 − lkÞÞ
ð11Þ

Where l = 1 if the subject selected face i (e.g., the happy
face) and l = 0 if the subject selected face j (e.g., the
angry face). Here, D* is the series of decisions of the sub-
ject, as opposed to the series of outcomes, which is col-
lected in D in the previous equations. We maximized the
likelihood using fminsearch in Matlab. We started from
several initial conditions and examined the likelihood
and parameter values for each individual subject. Most
initial conditions led to the same maximum estimates,
giving us confidence that these maxima were global max-
ima. Significance testing of model parameters was then
carried out using one-sample t tests of the parameter dis-
tributions for each subject. This is a random effects ap-
proach and gives us an estimate of whether a particular
term in the model is significantly different from zero in
the population.

fMRI Data Analysis

Functional brain images were acquired on a 3-T Allegra
scanner at a resolution of 3 × 3 × 3 mm3, TR = 2.88 sec,
TE = 65 msec. The slice angle was set to −30° and a
Z-shim of −0.4 mT/m · msec was applied so as to mini-
mize signal dropout in orbito-frontal cortex and amygdala
(Weiskopf, Hutton, Josephs, & Deichmann, 2006). Field
maps were acquired using a dual-echo 2-D gradient-echo
sequence with echoes at 10.0 and 12.46 msec. T1-weighted
structural images were acquired for subject alignment at a
voxel resolution of 1 × 1 × 1mm3. Subjects lay in the scan-
ner with foam head-restraint pads to minimize any move-
ment. Responses were made using a button box held in
the right hand. Using SPM5, images were realigned to the
first volume, normalized to a standard echo-planar imag-
ing template, and smoothed using a 6-mm full-width half-
maximum Gaussian kernel. Images were analyzed using
an event-related general linear model, with the onsets of
each task event represented as a delta (stick) function.

Time points of interest were the choice and feedback
screens within each trial. These were modeled with two
delta functions, and each had associated parametric
modulators described below. Also included were several
regressors of no interest representing the stimulus on-
sets, the button press, and motion parameters estimated

during the realignment procedure. All regressors (except
the motion parameters) were convolved with a canonical
hemodynamic response function and its temporal deriv-
ative. The choice screen was parametrically modulated
by a single variable of interest: the probability that the
chosen face was more likely to be rewarded p(θi > θj)
(Equation 10). The feedback regressor was paramet-
rically modulated by the reward prediction error (RPE)
from the Bayesian reinforcement learning model. Al-
though the choice and feedback were separated by a
fixed 4.5-sec interval (Figure 1), the parametric regressors
were not strongly correlated (the regressors had <10%
shared variance in the first-level model for all subjects).
As they were entered simultaneously in the model, they
could compete for distinct variance in the hemodynamic
response.
The RPE is given by the actual rewardminus the probabil-

ity of the reward computed under the model. Specifically:

RPEðtÞ ¼

1 − riþαi
Niþ2 : D*ðtÞ ¼ i; rðtÞ ¼ 1

0 − riþαi
Niþ2 : D*ðtÞ ¼ i; rðtÞ ¼ 0

1 − rjþαj

Njþ2 : D*ðtÞ ¼ j; rðtÞ ¼ 1

0 − rjþαj

Njþ2 : D*ðtÞ ¼ j; rðtÞ ¼ 0

8>>>><
>>>>:

ð12Þ

Note that ri in this case reflects the biased integration of
evidence (Equation 6), so it is different depending on the
model parameters used to compute it. It is not simply the
number of times each face has been rewarded. Addition-
ally, the second term in the first line refers to the pre-
diction component. More specifically, the RPE is given
by r(t)− p(r(t)), that is, the actual reward received minus
the predicted reward. Thus, the RPE can be separated
into the reward received r(t), which is noted as 1 or 0
in the first term of Equation 12, and the predicted reward
p(r(t)), where the predicted reward is given by the second
term, which includes both reward and prior components.
Reported results are all whole brain cluster-level cor-

rected at p < .05 (height threshold = .005, uncorrected;
extent threshold = 30 contiguous voxels). In addition,
small-volume corrected (SVC) results are reported in
areas that were hypothesized as components of the re-
ward and mentalizing networks, including the ventral
striatum and TPJ. Activations in all figures are corre-
spondingly shown at p < .005, uncorrected. All signifi-
cant clusters are reported in the results.

RESULTS

Subjects carried out a decision-making task in which they
were asked to learn, in each block of trials, which of two
faces was being more often rewarded, and then select
that face as many times as possible (Figure 1). On each
individual trial, participants were presented with two
faces, one happy and one angry. The faces had the same
identity and were presented pseudorandomly on either
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the top or bottom of the screen. Participants were given
2.5 sec to make their decision, after which the chosen
face was highlighted to confirm their decision. They
were then informed as to whether they had “won” or
“lost” in that trial, with a win worth 10 pence, and a loss
worth nothing.

Behavior

The task was challenging because the two faces were sto-
chastically rewarded and the difference between the
probability of reward for each face was small (.6 vs. .4).
To begin assessing task performance, participant be-
havior was compared to an ideal-observer model on a
trial-by-trial basis. The ideal observer performed opti-
mally based on the reward history up to the current trial
and was not affected by the facial expression (see Meth-
ods). Therefore, deviations from this model can be used
to examine the effects of the emotional expression.
When referenced to this model of ideal responding, sub-
jects were found to perform, on average, at 72.9% ac-
curacy, which was significantly above chance [t(17) =
8.6, p < .01]. The ideal observer was also used to test
whether participants were biased in their responding
toward the happy face, averaged across the block. On
average, participants chose the happy face when they
should have chosen the angry face 30% of the time [p(sub-
ject choice = happy∣ideal observer choice = angry) = .30]
and they chose the angry face when they should have cho-
sen the happy face 24% of the time [p(subject choice =
angry∣ideal observer choice = happy) = .24]. These prob-

abilities were significantly different ( p < .01, likelihood
ratio test, df = 1). Stated another way, subjects were
biased toward choosing the happy face about 60% of the
time when the model evidence was equivocal (Figure 2A;
equivocal model evidence is at .5 on the x-axis). Thus,
there was a preference across participants to select the
happy face, even when the evidence equivocally or more
strongly supported the angry face. This result replicates
our previous behavioral findings that emotional expres-
sions consistently bias learning processes (Averbeck &
Duchaine, 2009).

Next, we modeled the choice behavior using a Bayesian
reinforcement learning model fit to the choice data from
each individual subject. The model had four parameters,
as opposed to the ideal observer, which had no free
parameters. These parameters allowed us to better model
the individual choice behavior of each subject, and exam-
ine the relative impact of four factors on decision-making.
The first two parameters, positive feedback (parameter a)
and negative feedback (parameter b), modeled only the
effects of the outcome the subjects received at the end
of each trial. The second two parameters, a relative evi-
dence preference for happy faces (parameter c) and a
relative prior preference (or possibly an aversion) for
happy faces (parameter d), modeled the effects of the ex-
pression on the decision processes, independent of how
much positive or negative feedback had been given for
each face. The prior effect modeled the bias toward choos-
ing one or the other expression prior to the subjects hav-
ing any evidence about which face was more rewarding.
Conversely, the evidence factor modeled the expressionʼs

Figure 1. Task: Angry and smiling faces were presented on each trial. One of the faces was then selected using a button box, and the subject
was then informed of the trial outcome (win or lose). Subjects had to integrate information across trials to determine which face had a higher
probability of leading to a “win.” Time at bottom of each frame indicates the onset time.
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impact on the accumulation of evidence. For example, if a
subject counted positive feedback from the happy face
more than positive feedback from the angry face, they
would have a positive evidence bias. Individual t tests
on the four model parameters (Figure 2B–E) across sub-
jects showed that the subjects learned from both positive
[〈a〉 = 0.44, t(17) = 3.7, p = .002] and negative feedback
[〈b〉 = 0.671, t(17) = 5.6, p < .001]. Additionally, the
positive feedback term was significantly correlated with
the fraction correct for each individual subject [r(16) =
.879, p < .001], but the negative feedback parameter
was not [r(16) = .146, p = .562]. Thus, the sensitivity to
positive feedback more accurately characterized overall
performance. Participants also had significant evidence
[〈c〉 = 0.09, t(17) = 2.8, p = .013] and prior [〈d〉 =
0.13, t(17) = 3.1, p = .006] terms. Overall, the four-
parameter Bayesian model provided a significantly better
prediction of the behavior than the ideal observer in all
18 subjects [χ2(72) = 337.8, p < .001]. Thus, consistent
with the results reported above, the facial expression influ-
enced decision-making processes toward the happy face
as captured by positive values of parameters c and d of
the model. Furthermore, the model was able to factor
these effects on learning into four components, two finan-
cial (a and b) and two social (c and d).

Correlations between Model Predictions and BOLD
Response at Time of Choice

Below we correlate predictions from the behavioral model
with the BOLD signal on a trial-by-trial basis. To examine
how emotional preferences at time of choice are captured
by model parameters, we compared model predictions
with subsets of model parameters set to zero (Figure 3).
Choice probability estimates the probability that the sub-
ject will select each option given the feedback history, and

therefore, it is an estimate of the current subjective value
of each option. Thus, if we compare a model with and
without the prior term, we can see how the prior captures
a preference toward the happy face that decreases as more
evidence is gathered (Figure 3). Another salient point
is that subjects generally do not integrate information as
well as the ideal observer, so if the ideal and learning lines
are compared, the choice probability is less extreme (i.e.,
closer to .5 which is equivocal) for the learning model. For
the analyses below, we will correlate the full model with
the BOLD signal, as this model best describes the subjectʼs
behavior. We then carry out between-subjects correlations

Figure 2. Behavior. (A) Ideal observer model evidence versus subject choice behavior. Shift of curve up and left indicates preference for happy
face, as it is chosen more often than the feedback predicts it should be. (B) Distribution across subjects (n = 18) of parameters from Bayesian
reinforcement learning model for positive feedback (parameter a from Methods). (C) Distribution of parameters for learning from negative feedback
(parameter b). (D) Distribution of parameters for evidence bias (parameter c). (E) Distribution of parameters for prior bias (parameter d ).

Figure 3. Choice probability predictions from Equation 10:
p(θhappy > θangry). Data are from an example block of trials for a
single subject. Dots near .9 indicate positive feedback, dots near .1
indicate negative feedback, for the corresponding trial. Parameters
were first fit to each subject to optimize the modelʼs prediction of their
choice behavior, and then these parameters were used to generate
the data shown. The ideal model has all model parameters set to zero.
The learning model has parameters c (evidence) and d (prior) set to
zero. Thus, this model incorporates differences in how subjects learn
from positive (parameter a) and negative (parameter b) feedback, but it
does not incorporate any social preferences. The evidence model has
parameter d (prior) set to zero and the prior model has parameter c
(evidence) set to zero. The full model does not set any of the
parameters to zero.
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between model parameters and the contrast of the full
model on the BOLD signal in order to identify areas that
mediate individual differences in parameter strength.
When we correlated choice probability with the BOLD

signal at the time of the decision, we found three signifi-
cant clusters in cortex. The first was in ACC (Figure 4A;
p < .05, cluster-level whole-brain corrected), the second
was in medial parietal cortex (Figure 4A; p < .05, cluster-
level whole-brain corrected), and the third was in left
parietal cortex, dorsal to the TPJ (Figure 4B; p < .05,
cluster-level whole-brain corrected). Thus, there were
significant correlations at the time of choice with the rel-
ative value of the chosen option. We examined between-
subjects correlations between learning from positive
feedback (parameter a) and the contrast between choice
probability and the BOLD signal. Specifically, this analy-
sis looks for areas which show greater correlation be-
tween BOLD and choice probability in subjects who learn
more from positive feedback. This analysis identified a sin-
gle cluster in right parietal cortex (Figure 4C; p < .05,
cluster-level, SVC centered at peak activation, 10 mm
radius). Therefore, subjects who showed stronger corre-

lations of right parietal cortex activity with choice probabil-
ity also learned more from positive feedback, leading to
better performance in the task.

Correlations between Model Predictions and BOLD
Response at Time of Feedback

When feedback was given, an RPE could be calculated as
the difference between actual and predicted outcomes
(Equation 12). The RPE also depended on the model
parameters, as the model estimated an implicit expected
reward for each subject, which differed from the explicit
expected reward. Specifically, the effects of a prior prefer-
ence (Figure 5A) showed that subjects made decisions as
if the happy face would be more often rewarded at the
beginning of the block. This effect decreased as the block
continued. The evidence preference, however, had an ef-
fect that extends throughout the block (Figure 5B). Simi-
lar to the choice probability analysis above, correlations
with the BOLD signal are carried out using the full model.

The RPE was extracted trial-by-trial from the model,
after the model had been fit to each individual subject.

Figure 5. RPE under different models. Data are from example blocks of trials from two different subjects chosen to illustrate the effects of
prior (parameter d ) and evidence (parameter c) terms. Models are defined the same as in Figure 3. Difference refers to the difference between
the learning model and the other model in each panel. (A) Comparison of RPE under the model with no prior and no evidence bias terms,
and a model with the prior bias term. (B) Comparison of RPE under a model with no prior and no evidence bias terms and a model with the
evidence term.

Figure 4. Significant correlations between BOLD signal and choice probability at time of choice. (A) Correlation between choice probability,
p(θchoice > θalternative), and BOLD response at time of choice in ACC (x = 6, y = 24, z = 39) and medial parietal cortex (x = 6, y = −66, z = 39).
(B) Activation from same contrast in left parietal cortex (x = −42, y = −60, z = 42). (C) Between-subject correlation between learning from
positive feedback (parameter a from model) and choice probability contrast in right parietal cortex (x = 42, y = −45, z = 42).
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Therefore, this RPE reflects the combined effects of all
four model parameters and was optimized to fit the choices
of each individual subject. When the RPE was correlated
with the BOLD response at the time of feedback, we
found three areas that were significant after whole-brain
correction. One in the anterior subcallosal cingulate (Fig-
ure 6A and B; p< .05 cluster-level, whole-brain corrected),
one in the posterior cingulate (Figure 6A; p < .05, cluster-
level, whole-brain corrected), and one in visual cortex
(Figure 6A; p < .05, cluster-level, whole-brain corrected).
Activationwas also seen in the ventral striatum that survived
small-volume correction [SVC] (Figure 6C; p< .05, cluster-
level, SVC centered at peak activation, 10 mm radius).

The model factors the overall effects of the decision
process into four components, positive feedback, nega-
tive feedback, and evidence and prior preferences for
the emotional expressions. To examine which brain areas
mediate different components of the decision process,
we correlated model parameters between subjects with
contrast estimates which assessed correlations between
the RPE and the BOLD signal. Thus, this analysis looked
for areas which had a stronger (or weaker) modulation of
the BOLD signal for subjects which learned more from
positive feedback. We first examined correlations between
learning from positive feedback (parameter a) and found
three areas that were significant. Specifically, one cluster in
the right ventral striatum (Figure 7A; peak activation at
x = 12, y = 12, z = −9, p < .05, cluster-level whole-brain
corrected), one in ACC (Figure 7B; peak activation at x =
3, y = 39, z = 15; p < .05, cluster-level whole-brain cor-
rected), and one in dorsolateral prefrontal cortex (not
shown; p < .05, cluster-level whole-brain corrected, peak
activation at x = 39, y = 42, z = 27). Additionally, the cor-
relation in the left ventral striatum was significant after SVC
(Figure 7A; p = .001 cluster-level, SVC centered at peak
activation, 10 mm radius). There were no clusters that ex-
ceeded chance for learning fromnegative feedback (param-
eter b), which is unsurprising, given that this parameter did
not correlate with overall performance in the task.

When the same analysis was carried out for correla-
tions with prior preference (parameter d), two significant
clusters were found. The first was in the caudal anterior
cingulate (Figure 7C; p < .05, cluster-level whole-brain
corrected) and the second was in the right dorsal TPJ
(Figure 7D; p < .05, cluster-level whole-brain corrected).
Finally, when correlations with the evidence bias (param-
eter c) were examined, a single cluster in the right TPJ
reached significance (Figure 7E; p < .05, cluster-level
whole-brain corrected). Interestingly, while the TPJ clus-
ters correlating with the evidence and prior parameters
were very near each other, there was only minor overlap
between activations (2 common voxels). Examination of
these effects at the peak voxel of each significant cluster
showed no significant correlations with the alternative
parameter (Figure 7, right column). Thus, correlations be-
tween model parameters related to learning and brain
activation were found in areas commonly implicated in
reward processing, and correlations between model param-
eters related to social preferences were found in compo-
nents of the mentalizing network.
The correlations between individual differences in learn-

ing from positive feedback and activation in the ventral
striatum (Figure 7A) were negative. This suggests that
larger prediction errors lead to larger BOLD responses in
subjects that learned less (given by the learning from pos-
itive feedback parameter, which is strongly correlated with
overall performance as reported above). This finding was
somewhat counterintuitive. To examine this in more de-
tail, we carried out an additional analysis, in which we sep-
arated the RPE into the reward (i.e., “You win” vs. “You
lose”) and the prediction (i.e., the subjectʼs prediction of
reward, based on the model) components, and simul-
taneously regressed these on the BOLD response (see
Methods for an additional discussion of the reward and
prediction components of the RPE). As the outcomes
were highly stochastic (60%/40% splits in every block), re-
ward and reward prediction were relatively independent of
each other. When we carried out this analysis, we first

Figure 6. Significant correlations with RPE (Equation 12) at time of feedback. (A) RPE correlation in anterior (x = 3, y = 42, z = −9) and
posterior (x= 3, y=−39, z= 39) cingulate cortex and visual cortex (x=−9, y=−81, z= 0). (B) RPE correlation shown in coronal section through
ACC. (C) RPE correlation in the right ventral striatum (x = 12, y = 6, z = −9).
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Figure 7. Between-subject
correlations between contrast
estimates for the RPE at time
of feedback and model
parameters from the Bayesian
reinforcement learning model.
(A) Significant correlation
between positive feedback
(parameter a) and contrast in
the ventral striatum (x = 12,
y = 12, z = −9). (B) Significant
correlation between positive
feedback and contrast in ACC
(3, 39, 15). (C) Significant
correlation between prior
(parameter d ) and dorsal ACC
(x = −3, y = 15, z = 45). (D)
Significant correlation between
prior and TPJ (x = 45, y = −54,
z = 36). (E) Significant
correlation between evidence
bias (parameter c) and TPJ
(x = 36, y = −51, z = 39).
The right-hand column shows
the correlations between the
peak voxel in these contrasts
and model parameters. We
note that these plots are biased
toward showing a strong
correlation with the parameter
used to select the voxel; they
are included to illustrate the
specificity of the relationship
between separable model
parameters and brain activity.
Blue lines and dots indicate
the relation between prior
(parameter d, Equation 8) and
contrast; red line and dots
indicate the relation between
learning from positive feedback
(parameter a, Equation 4) and
contrast. Green line and dots
indicate the relation between
activity and the evidence bias
(parameter c, Equations 4
and 5).
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found that the reward component correlated with a net-
work nearly identical to that which correlated with the
RPE. Specifically, significant clusters were found in subcal-
losal ACC (Figure 8A and B; p < .05, cluster-level whole-
brain corrected) and in the ventral striatum (Figure 8C;
p < .05, cluster-level, SVC centered at peak activation,
10 mm radius). Thus, the correlation in these structures
with the RPE appears to be largely driven by reward versus
no-reward outcomes. When we examined correlations with
the prediction component of the RPE, a cluster in the TPJ
was significant (Figure 8D; cluster-level whole-brain cor-
rected). There were, however, no significant clusters or
even suprathreshold voxels in the subcallosal cingulate or
the ventral striatum, further supporting the hypothesis
that these correlations are driven by reward and not pre-
diction. We note that the TPJ cluster, which correlated with
prediction, did not appear in the original analysis with

compound RPE. One potential explanation for this dis-
crepancy is that the variance in the RPE is dominated by
reward versus no-reward outcomes (Figure 5). Thus, the
TPJ seems to specifically correlate with prediction of re-
ward association with the faces rather than responding
to reward feedback itself.
In the final analysis, we again carried out between-

subject correlations, here between the separate reward
and prediction components and the factors from the be-
havioral model to examine which aspect of the feedback,
the reward or the prediction, better correlated with the
parameters from the model identified in Figure 7. In this
analysis, we found a negative correlation in the ventral
striatum between reward outcome and learning from pos-
itive feedback (Figure 9A; p < .05, cluster-level whole-
brain corrected). No suprathreshold voxels were found
for the correlation with prediction. Similarly, the prior

Figure 9. Correlations
between reward and prediction
contrast and model parameters.
(A) Significant negative
correlation between reward
contrast and learning from
positive feedback (left side:
x = −15, y = 15, z = 0; right
side: x = 9, y = 6, z = −12).
(B) Significant negative
correlation between reward
contrast and prior (x = −6,
y = 15, z = 45). (C) Significant
negative correlation between
reward contrast and prior in the
TPJ (x = 33, y = −42, z = 30).
(D) Significant positive
correlation between prediction
contrast and learning from
positive feedback (x = 36,
y = −57, z = 36).

Figure 8. Separate reward (i.e., win vs. lose) and prediction correlations (see Methods for a description of the separate components of the RPE).
(A–C) The network correlated with reward is highly similar to the network correlated with the RPE, shown in Figure 6. (D) Specific correlations
with reward prediction were found in the right TPJ (x = 51, y = −21, z = 6).
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correlated with reward in caudal ACC (Figure 9B; p< .05,
cluster-level whole-brain corrected) and the dorsal TPJ
(Figure 9C; p < .05, cluster-level whole-brain corrected)
but not with prediction (no suprathreshold voxels). One
cluster showed a positive correlation between predic-
tion and learning from positive feedback in the dorsal
TPJ (Figure 9D; p < .05, cluster-level whole-brain cor-
rected). Thus, the correlations in Figure 7 can be ex-
plained by correlations with reward feedback and not
with prediction.

DISCUSSION

Decision-making processes are frequently studied in the
context of reward, as decisions are assumed to maximize
a subjective utility function, where utility is mapped to
reward or punishment. In our task, we found that both
the financial reward and the emotional expression drove
decision-making processes. Based on behavior alone,
one might hypothesize that the smiling face was appeti-
tive and the angry face was aversive, and that viewing
them gave some small additional increment to the reward
circuitry which drove the decision process (Montague &
Berns, 2002). This would be consistent with the assump-
tion that decisions are driven by rewards and that all types
of reward, for example, social and monetary, are pro-
cessed through a common circuitry (Chib, Rangel, Shimojo,
& OʼDoherty, 2009). At some point in the process, this
premise has to be true, as the decision is ultimately re-
vealed by a motor action. The question is whether all cues
which drive decisions are processed by a single system or
whether, in our case, biases in learning induced by emo-
tional expression are mediated by a partially separate net-
work which processes social information (Van Overwalle,
2009; Frith & Frith, 2006). Importantly, the prior and evi-
dence parameters of the model used in our study captured
learning biases driven by the emotional expression of the
face, independent of the financial feedback. With respect
to this division, we found that, across subjects, the ventral
striatum mediated learning from positive financial feed-
back, whereas the caudal anterior cingulate and the dorsal
TPJ mediated prior- and evidence-related preferences
for the happy face.
Whether financial and social cues are processed by one

or multiple systems cannot be distinguished easily using
behavioral studies. However, this questions can be ad-
dressed using fMRI, as networks mediating the effects
of rewards tend to differ from networks that process so-
cial information (van den Bos et al., 2007; Walter, Abler,
Ciaramidaro, & Erk, 2005), although there is no complete
separation of these networks. For example, orbital and
ventromedial prefrontal cortex have been implicated in
both reward (Elliott & Deakin, 2005; OʼDoherty, Critchley,
et al., 2003) and social processing (Grossman et al., 2010;
Hynes et al., 2006; OʼDoherty, Winston, et al., 2003). It is
likely that the distinction between social and emotional
processing becomes quite important when considering

ventromedial and orbital–prefrontal cortex. For example,
both rewards and social cues can have positive and nega-
tive affective value, and it may be this affective component,
as opposed to the specifically social component, that is en-
gaging these areas. Indeed, previous studies have shown
that orbital and ventromedial prefrontal areas are prefer-
entially engaged by contrasts over affective aspects of the
social tasks (Grossman et al., 2010; Hynes et al., 2006). In-
terestingly, in our task, we did not find differential acti-
vation in orbital prefrontal cortex for rewards or social
processing, although we found activation in ventromedial
prefrontal cortex for financial reward.

Previous work has addressed related but different
questions. For example, Behrens et al. (2008) found that
when subjects were integrating feedback and explicit ad-
vice from a confederate about which stimulus to choose,
a social predication error activated the caudal anterior cin-
gulate as well as the TPJ. These results are consistent with
ours, despite the fact that our task utilized an implicit so-
cial cue that subjects could ignore, whereas Behrens et al.
utilized an explicit social cue. Other studies have exam-
ined the impact of feedback that was given by either a
computer or a confederate (van den Bos et al., 2007),
and found activation in the temporal poles when contrast-
ing the effects of confederate versus computer feedback.
Inferring second-order effects of oneʼs own actions on the
actions of an opponent in a strategic game also activates
anterior cingulate and temporo-parietal areas (Hampton,
Bossaerts, & OʼDoherty, 2008). All of these tasks, particu-
larly the latter, differ from more commonly used theory of
mind tasks, but, as in the present study, appear to auto-
matically engage components of the same network. In
general, theory of mind refers to the mental process of in-
ferring the thoughts or intentions of others. This mental
process is often engaged by asking subjects to infer knowl-
edge about participants in various scenarios.

Although our study is related to these previous studies,
it differs in important ways. First, our subjects were re-
quired to learn the value of a face, where the faces differed
in their emotional expressions. Previous studies focused on
learning the value of an abstract image (Behrens et al.,
2008) or the value of an abstract choice (Hampton et al.,
2008), or focused on task performance (van den Bos
et al., 2007). Second, there was no social feedback per se
in our experiment. The social effects were mediated by
implicit effects of emotional expressions. Third, using a
Bayesian reinforcement learning model, we were able to
take advantage of the fact that expressions have prior in-
trinsic value, and factor the effect of the expressions into
prior and evidence terms. This is an important distinction,
given that previous work has tended to focus on social
versus nonsocial evidence and has not examined effects
of stimuli which have intrinsic social information, unlike
in our task. Recent work has shown that the intrinsic value
of faces can be more effective than abstract stimuli when
used as a reinforcer and further, that this value is specifi-
cally sensitive to oxytocin (Hurlemann et al., 2010). In
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accordance with the present data, the results of Hurlemann
et al. suggest that feedback information provided by
social stimuli is processed by different networks and is
affected by different pharmacological mechanisms than
nonemotional cognitive feedback. We have also found, in
related work, that oxytocin can specifically affect the dis-
preference for the angry face in our task, without affecting
the way reward feedback is processed (Evans, Shergill, &
Averbeck, 2010).

We further found that subjects who did not learn as
well had larger RPE responses in the ventral striatum than
subjects who learned better. When we split RPE into
reward and prediction components, the correlations be-
tween reward and behavioral parameters were similar to
the correlations between RPE and behavioral parameters,
demonstrating that these effects are predominantly driven
by the reward component of the RPE and not by the pre-
diction component. This potentially counterintuitive find-
ing can be explained by noting that we found a positive
correlation between the choice probability contrast and
learning from positive feedback at the time of choice in pa-
rietal cortex. Subjects who learned better showed stronger
correlations between probability that they were picking
the best face and BOLD signal at the time of choice. Thus,
subjects who learned poorly appeared to respond to the
reward (increased striatal response), but they did not
appropriately use this reward information to bias brain
activity at the time of choice. The correlation in the TPJ
between reward prediction and learning from positive
feedback further corroborated this interpretation, as this
correlation was positive. An analogous result is that smok-
ers computed a fictitious learning prediction error, but
they did not appropriately integrate it (Chiu, Lohrenz, &
Montague, 2008). Here we show a similar effect, although
our finding is within a group of normal subjects who vary
in their learning rates. One other study has found that the
dorsal striatum showed increased modulation with the RPE
in good learners versus bad learners (Schonberg, Daw,
Joel, & OʼDoherty, 2007). We did not observe a dorsal
striatal response in the present study, but this null result
could be due to differences in task structure and/or sub-
jectsʼ learning performance. Further work is needed to
identify the causal role of reinforcement-related brain ac-
tivity on individual differences in performance.

We found that caudal cingulate activity correlated with
the RPE, an area often seen to be activated in interactive
behavioral economics experiments (Tomlin et al., 2006).
For example, during economic exchanges, when inves-
tors see the trusteeʼs response, there is increased activa-
tion in the caudal portion of the cingulate, just dorsal to
the corpus callosum. Activation has also been seen in
this area when subjects viewed faces of opponents with
whom they were interacting in prisonerʼs dilemma games
(Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004), as well
as in mentalizing experiments (Lombardo et al., 2010;
Abraham, Werning, Rakoczy, von Cramon, & Schubotz,
2008; Gobbini, Koralek, Bryan, Montgomery, & Haxby,

2007). Thus, activation in this area may be related to asso-
ciating an outcome with another agent in a social inter-
action. This is consistent with our hypothesis that the
preference effects we see in our task are mediated by men-
talizing networks.
Several contrasts identified nonoverlapping but spa-

tially adjacent anterior cingulate and ventromedial prefron-
tal areas. Specifically, choice probability (caudal, ventral
ACC), reward feedback (anterior, ventromedial prefron-
tal), and a prior preference for happy faces (anterior ven-
tral ACC) all activated nearby areas. The reward activation
in ventromedial prefrontal cortex is consistent with a role
of ventromedial prefrontal cortex in processing of reward
feedback (OʼDoherty, Critchley, et al., 2003). The correla-
tions between prior social preferences and ACC activation,
and choice probability and ACC activation, are consistent
with a role of this area in processing social information rel-
evant to decisions (Behrens et al., 2008; Hampton et al.,
2008). This heterogeneity of activation is consistent with
a role for ACC in guiding behavior based on multiple
sources of value (Rushworth, Buckley, Behrens, Walton,
& Bannerman, 2007). Thus, the separable components
of our task appeared to engage nearby but separate com-
ponents of the network mediating value-based decisions.
A consistent finding across a number of contrasts was

that the TPJ and the adjacent parietal cortex mediated as-
pects of learning. A positive correlation at the time of
choice was found between learning from positive feed-
back and the dependence of choice probability on BOLD
activation. Thus, subjects who learned better from posi-
tive feedback had a stronger correlation between their
BOLD response and choice probability in parietal cortex.
There were also correlations at the time of feedback be-
tween prior and evidence parameters and the correlation
between the RPE and the BOLD signal in this region. In
this case, subjects who had larger prior and evidence biases
had a lower dependence of the RPE on the BOLD signal.
Thus, subjects whose decisions were more strongly driven
by emotional preferences showed a weaker modulation of
the BOLD signal in this area by reward. Finally, when the
RPE was split into a reward and a prediction component,
the TPJ was the only area that showed a correlation be-
tween learning from positive feedback and reward predic-
tion. Thus, this area appears to play a key role in assigning
value to the faces in this task. More specifically, the correla-
tion of TPJ activity with reward prediction mediates aspects
of the decision process that are updated dynamically, trial-
by-trial, whereas the dorsal TPJ correlation with the prior
mediates aspects of the decision process that are static
and predetermined by each subjectʼs reaction to the face
stimuli. Some authors have argued that the TPJ is more im-
portant for attention than social processes (Corbetta &
Shulman, 2002). However, value and attention are closely
related (Maunsell, 2004), and it is not surprising that learn-
ing would modulate a network which may also be involved
in attention. In our case, however, it is specifically learning
the value of a socially relevant image that engages the TPJ.
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Conclusion

We found that emotional expressions were able to influ-
ence decision processes, and that the brain network un-
derlying this effect differs from that characterized for
reward processing. Specifically, although the financial re-
ward component of the task was mediated by the ventral
striatum and the subcallosal anterior cingulate, the differ-
ential effect of the emotion component was mediated by
the mid-anterior cingulate and the dorsal TPJ. Thus, in
the context of our task, when social information biases
reward-based decision processes, it does so by engaging
regions implicated in social processing, rather than re-
gions involved in processing primary reward. It is impor-
tant to point out, however, that the preferences induced
by the faces may not be solely driven by social considera-
tions. Further experiments could separate emotional and
social valence, as well as perhaps considering other ap-
petitive and aversive stimuli to ask whether they engage
similar or different networks. Overall, this study has im-
portant implications for understanding how information
from different sources is integrated in the brain for real-
world decision processes.
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